
Week 2 - Friday

 What did we talk about last time?
 More proof techniques
 Asymptotic orders of growth
 Started stable marriage

 Four men are standing in front of a firing-squad
 #1 and #3 are wearing black hats
 #2 and #4 are wearing white hats
 They are all facing the same direction with a wall between #3

and #4
 Thus,
 #1 sees #2 and #3
 #2 sees #3
 #3 and #4 see no one

 The men are told that two white hats and two black hats are
being worn

 The men can go if one man says what color hat he's wearing
 No talking is allowed, with the exception of a man announcing

what color hat he's wearing.
 Are they set free? If so, how?

1

3

2

4

 All 2n people want to get married
 All of them are willing to marry any of the n members of the

opposite gender
 Each woman has ranked all n men in order of preference
 Each man has ranked all n women in order of preference
 We want to match them up so that the marriages are stable

 Consider two marriages:
 Anna and Bob
 Caitlin and Dan

 This pair of marriages is unstable if
 Anna likes Dan more than Bob and Dan likes Anna more than Caitlin

or
 Caitlin likes Bob more than Dan and Bob likes Caitlin more than Anna

 We want to arrange all n marriages such that none are
unstable

 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs

 Once a woman is engaged, she'll stay engaged
 Maybe her engagement will change to a man she likes more, but she

will never become free again
 The sequence of women that a particular man proposes to will

get lower and lower on his preference list

 We want to bound the time that an algorithm takes
 Sometimes that means coming up with some kind of indirect

measurement of the operations
 We can define P(t), the progress at time t, as the set of unique

proposals of m to w on the tth iteration of the algorithm
 Note that on every iteration, a unique proposal (m, w)

happens, so the size of P(t + 1) is always one more than P(t)

 The algorithm runs at most n2 iterations of the While loop.
 Proof:
 No men will propose after they have proposed to all the women.
 There are a maximum of n2 ways for any man to propose to any

woman.
 At each iteration, the progress increases.
 Thus, it's impossible for the algorithm to run more than n2 iterations.
∎

 Proof by contradiction:
 Suppose that m is free but has already proposed to every woman.
 We have already established that a woman can never become

unengaged once she's been proposed to.
 Since m has proposed to all women, they're all engaged.
 But then there would be n women who are engaged to n different

men.
 Since m is one of those n men, he must not be free, which is a

contradiction.
∎

 Proof by contradiction:
 Suppose that there is at least one man m who is unmatched at the

end of the algorithm.
 He must have proposed to every woman or the While loop would not

have terminated.
 However, this contradicts the previous proof that any free man must

have a woman he hasn't proposed to.
∎

 Proof by contradiction:
 Suppose that the matching is not stable.
 Thus, there are pairs (m, w) and (m', w') such that m prefers w' and w' prefers m.
 It must be the case that m's last proposal was to w.
 Case 1: m never proposed to w'

▪ Since m proposed to women in descending order of preference, he must prefer w more than
w', a contradiction.

 Case 2: m did propose to w'
▪ If so, w' preferred some later proposer m'' to m.
▪ But for w' to end up with m', m' = m'' or m' is someone she preferred even more than m'', and

thus more than m, a contradiction.

 Since all cases lead to contradictions, the matching must be stable.
∎

 In the interval scheduling problem, some resource (a phone, a
motorcycle, a toilet) can only be used by one person at a time.

 People make requests to use the resource for a specific time
interval [s, f].

 The goal is to schedule as many uses as possible.
 There's no preference based on who or when the resource is

used.

 Interval scheduling can be done with a greedy algorithm
 While there are still requests that are not in the compatible set
 Find the request r that ends earliest
 Add it to the compatible set
 Remove all requests q that overlap with r

 Return the compatible set

 The weighted interval scheduling problem extends interval
scheduling by attaching a weight (usually a real number) to each
request

 Now the goal is not to maximize the number of requests served
but the total weight

 Our greedy approach is worthless, since some high value requests
might be tossed out

 We could try all possible subsets of requests, but there are
exponential of those

 Dynamic programming will allow us to save parts of optimal
answers and combine them efficiently

 A bipartite graph is one whose nodes can be divided into two
disjoint sets X and Y

 There can be edges between set X and set Y
 There are no edges inside set X or set Y
 A graph is bipartite if and only if it contains no odd cycles

A B C D E F

G H I J K L

X

Y

 A perfect matching is when every node in set X and every
node in set Y is matched

 It is not always possible to have a perfect matching
 We can still try to find a maximum matching in which as

many nodes are matched up as possible
 Our algorithm will use the idea of an augmenting path, which

is useful in many network flow problems
 This technique is neither greedy nor dynamic programming

 Independent set is another graph problem
 Given an undirected graph, find the largest set of nodes that

are not connected to each other
 Doesn't sound too bad, right?
 Practical application:
 Nodes represent friends of yours
 An edge between those two nodes means they hate each other
 What's the largest group of friends you could invite to a party if you

don't want any to hate each other?

A

H

G

FE

D

C

B

 Independent set is NP-complete
 That means:
 The best algorithm we know is exponential (try all subsets of

vertices)
 All other NP-complete problems can be turned into it
 Even all polynomial time problems can be turned into it (though it's

not always easy to see how)

 Take your interval scheduling problem and make all the
requests nodes

 If the nodes overlap, put an edge between them
 Then, run your independent set algorithm
 Magically, you'll get exactly those nodes corresponding to the

largest set of non-overlapping requests

 A little confusing!
 Make a new graph where there's a node corresponding to every

edge from the bipartite graph
 Now, connect every node in the new graph to every other node

(which was an edge) that shared endpoints in the original graph
 Running an independent set algorithm will now pick the largest

set of nodes (which were edges) such that none of the nodes are
connected

 Thus, only edges in the original graph will be selected if they don't
share endpoints

 Imagine that you have a graph where nodes represent locations
 There are edges between locations that are "too close" to both

have coffee shops
 Each node has a value associated with it, giving how much coffee

you can sell
 What if there are two companies that each take turns picking a

location to build their next coffee shop?
 What algorithm should either company follow to guarantee the

most value? Or to guarantee at least a certain amount of value?

 The competitive facility location problem is PSPACE-complete
 Problems that can be solved using only polynomial space and

unbounded time
 It is believed to be even harder than NP-complete
 Even though coffee chains don't play games like this,

PSPACE-complete problems include generalizations of:
 Almost every board game
 Game theory problems
 Serious AI problems

 An array is a random access list data structure available in
many programming languages

 An array of length n has the following properties:
 Retrieving the ith element in the list takes O(1) time
 Checking to see if an element appears in an unordered array takes

O(n) time
 Checking to see if an element appears in a sorted array takes O(log n)
 Adding or removing elements can take O(n) time to move elements

over or resize the array

 A linked list is a sequential access list data structure available
in most programming languages

 A list has the following properties:
 Retrieving the ith element in the list takes O(i) time
 Checking to see if an element appears may always take O(n) time
 Adding or removing elements from the beginning and end of the

linked list usually takes O(1) time

 While there is man m who is free and hasn't proposed to every woman
 Choose any such man m
 Let w be the highest-ranked woman in m's preferences that m hasn't proposed

to yet
 If w is free then
▪ (m, w) become engaged

 Else w is engaged to some man called m'
▪ If w prefers m’ to m
▪ m remains free

▪ Else
▪ (m,w) become engaged
▪ m' becomes free

 Return the set of engaged pairs

 Each iteration of the loop, we need to do four things
efficiently:
1. Find a free man m
2. Find the highest-ranked woman w that m hasn't proposed to
3. See if w is currently engaged and, if so, her current partner
4. For a woman w, decide whether she prefers m or m'

 If we keep a linked list of free men, we can find a free man in
constant time

 Each man has a list (presumably stored as an array) of his
preferences

 We only need to keep the index of the next woman he should
propose to

 Thus, we can keep all of the indexes for all of these men in a
single array and increment the appropriate index whenever a
man proposes, in constant time

 We can keep a separate array that lists which man each
woman is engaged to
 Most languages provide null or a similar value to represent no

current partner
 Before the algorithm, we can create an n x n array of ranks

called ranking, where ranking[w][m] gives the w's
ranking of m

 With this array, we can look up w's ranking of m and m' in
constant time

 Before, we proved that we needed a maximum of n2 iterations
of the While loop to solve the Stable Marriage problem

 We just demonstrated that we can do Θ(n2) work before the
loop and then do constant work inside each iteration

 Thus, the total work is Θ(n2) + Θ(n2), which is Θ(n2)

 Common running times
 Worked exercises
 Proofs by induction

 Read section 2.4
 Work on Assignment 1
 Due next Friday by midnight

	COMP 4500
	Last time
	Questions?
	Assignment 1
	Logical warmup
	Stable Marriage
	Imagine n men and n women
	Stability
	Gale-Shapley Pseudocode
	Observations
	Progress
	Running time
	If m is free, there is a woman he hasn't proposed to
	Everyone is matched when the algorithm terminates
	The algorithm gives a stable matching
	Five Representative Problems
	Interval scheduling
	Interval scheduling algorithm
	Interval scheduling example
	Weighted interval scheduling
	Bipartite graphs
	Bipartite graph
	Bipartite matching
	Independent set
	Independent set example
	NP-complete
	Solving interval scheduling with independent set
	Solving bipartite matching with independent set
	Competitive facility location
	PSPACE-complete
	Three-sentence summary of an efficient solution to Stable Marriage
	Implementing Stable Marriage
	Arrays
	Linked lists
	Gale-Shapley Pseudocode
	Steps in the loop
	Finding a free man and his next proposal
	Finding a woman's partner and her preferences
	Total running time
	Upcoming
	Next time…
	Reminders

